A high-order immersed boundary discontinuous-Galerkin method for Poisson's equation with discontinuous coefficients and singular sources

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A discontinuous-Galerkin-based immersed boundary method

A numerical method to approximate partial differential equations on meshes that do not conform to the domain boundaries is introduced. The proposed method is conceptually simple and free of userdefined parameters. Starting with a conforming finite element mesh, the key ingredient is to switch those elements intersected by the Dirichlet boundary to a discontinuous-Galerkin approximation and impo...

متن کامل

High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources

This paper introduces a novel high order interface scheme, the matched interface and boundary (MIB) method, for solving elliptic equations with discontinuous coefficients and singular sources on Cartesian grids. By appropriate use of auxiliary line and/or fictitious points, physical jump conditions are enforced at the interface. Unlike other existing interface schemes, the proposed method disas...

متن کامل

The Immersed Interface Method for Elliptic Equations with Discontinuous Coefficients and Singular Sources

The authors develop finite difference methods for elliptic equations of the form V. ((x)Vu(x)) + (x)u(x) f(x) in a region in one or two space dimensions. It is assumed that gt is a simple region (e.g., a rectangle) and that a uniform rectangular grid is used. The situation is studied in which there is an irregular surface F of codimension contained in fl across which , a, and f may be discontin...

متن کامل

A High Order Approximation of the Two Dimensional Acoustic Wave Equation with Discontinuous Coefficients

This paper concerns with the modeling and construction of a fifth order method for two dimensional acoustic wave equation in heterogenous media. The method is based on a standard discretization of the problem on smooth regions and a nonstandard method for nonsmooth regions. The construction of the nonstandard method is based on the special treatment of the interface using suitable jump conditio...

متن کامل

Optimal convergence of a discontinuous-Galerkin-based immersed boundary method

We prove the optimal convergence of a discontinous-Galerkin-based immersed boundary method introduced earlier [Lew and Buscaglia, 2008]. By switching to a discontinuous Galerkin discretization near the boundary, this method overcomes the suboptimal convergence rate that may arise in immersed boundary methods when strongly imposing essential boundary conditions. We consider a model Poisson’s pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal for Numerical Methods in Engineering

سال: 2014

ISSN: 0029-5981

DOI: 10.1002/nme.4835